Імунотерапія раку порожнини рота і ротоглотки. Використання моноклональних антитіл

Автор(и)

  • H. A. Hirna
  • I. D. Kostyshyn
  • M. M. Rozhko
  • R. A. Levandovskyi

DOI:

https://doi.org/10.24061/2413-0737.XXIV.2.94.2020.61

Ключові слова:

рак, порожнина рота, ротоглотка, імунотерапія

Анотація

Мета роботи – провести огляд джерел літератури і аналізувати використання моноклональних антитіл у лікуванні раку порожнини рота і ротоглотки.

Висновки 1. Сьогодні цетуксимаб є єдиним із моноклональних антитіл, що отримав FDA схвалення для лікування раку порожнини рота і ротоглотки. Клінічно використовується більше 10 років, і показує добрі результати. 2. Клінічні випробування підтвердили ефективність moAbs, що направляють свою дію на рецептори імунної контрольної точки, включаючи анти-CTLA-4 та анти-PD-1. Блокада імунної контрольної точки може покращити наявні клінічні ефекти терапії на фоні низької токсичності і може сприяти довготривалим ефектам через імунологічну пам'ять. 3. Використання інгібіторів імунних контрольних точок на даний час схвалюються лише в занедбаних стадіях раку. 4. Недостатньо клінічних даних, які можуть засвідчувати про доцільність поєднання кількох різних препаратів монокланальних антитіл, а також поєднання їх із променевою терапією або хіміотерапією.

Посилання

Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer. 2014;2:14. doi.org/10.1186/2051-1426-2-14.

Lopez-Albaitero A, Ferris RL. Immune activation by epidermal growth factor receptor specifc monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg. 2007;133(12):1277-81. doi: 10.1001/archotol.133.12.1277.

Moretta L, Ferlazzo G, Bottino C, Vitale M, Pende D, Mingari MC, et al. Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev. 2006;214:219-28. doi: 10.1111/j.1600-065X.2006.00450.x.

Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116-27. doi: 10.1056/NEJMoa0802656.

Bonner JA, Harari PM, Giralt J. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567-78.

Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie H-B, Davidson HC, et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res. 2013;19(7):1858-72. http://dx.doi.org/10.1158/1078-0432.CCR-12-2426.

Baselga J. The EGFR as a target for anticancer therapy–focus on cetuximab. Eur J Cancer. 2001;37(4):16-22. doi: 10.1016/s0959-8049(01)00233-7.

Cohen MH, Gootenberg J, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist. 2007;12(3):356-61. http://dx.doi.org/10.1634/theoncologist.12-3-356.

Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390-9. doi: 10.1200/JCO.2009. 27.6360.

Weiner LM. Fully human therapeutic monoclonal antibodies. J Immunother. 2006;29(1):1-9. doi: 10.1097/01.cji.0000192105.24583.83.

Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81(21):6851-5. doi: 10.1073/pnas.81.21.6851.

Gildener-Leapman N, Ferris RL, Bauman JE. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol. 2013;49(12):1089-96. doi: 10.1016/j.oraloncology.2013.09.009.

Grandis JR, Tweardy DJ. TGF-alpha and EGFR in head and neck cancer. J Cell Biochem Suppl. 1993;17F:188-91. doi: 10.1002/jcb.240531027.

Eisma RJ, Spiro JD, Kreutzer DL. Role of angiogenic factors: coexpression of interleukin-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma. Laryngoscope. 1999;109(5):687-93. doi: 10.1097/00005537-199905000-00002.

Bauman JE, Ferris RL. Integrating novel therapeutic monoclonal antibodies in the management of head and neck cancer. Cancer. 2014;120(5):624-32. doi: 10.1002/cncr.28380.

Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):3293-304. doi: 10.1200/JCO.2015.61.1509.

https://www.fda.gov.

Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567-78. doi: 10.1056/NEJMoa053422.

Vermorken JB, Herbst RS, Leon X, Amellal N, Baselga J. Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer. 2008;112(12):2710-9. doi: 10.1002/cncr.23442.

Licitra L, Storkel S, Kerr KM, Cutsem EV, Pirker R, Hirsch FR, et al. Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the EXTREME and CRYSTAL studies. Eur J Cancer. 2013;49(6):1161-8. doi: 10.1016/j.ejca.2012.11.018.

Basavaraj C, Sierra P, Shivu J, Melarkode R, Montero E, Nair P. Nimotuzumab with chemoradiation confers a survival advantage in treatment-naïve head and neck tumors over expressing EGFR. Cancer Biol Ther. 2010;10(7):673-81. doi: 10.4161/cbt.10.7.12793.

Reddy BK, Lokesh V, Vidyasagar MS, Shenoy K, Babu KG, Shenoy A, et al. Nimotuzumab provides survival benefit to patients with inoperable advanced squamous cell carcinoma of the head and neck: a randomized, open-label, phase IIb, 5-year study in Indian patients. Oral Oncol. 2014;50(5):498-505. doi: 10.1016/j.oraloncology.2013.11.008.

Vermorken JB, Stöhlmacher-Williams J, Davidenko I, Licitra L, Winquist E, Villanueva C, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. Lancet Oncol. 2013;14(8):697-710. doi: 10.1016/S1470-2045(13)70181-5.

Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116-27. doi: 10.1056/NEJMoa0802656.

Giralt J, Trigo J, Nuyts S, Ozsahin M, Skiadowski K, Hatoum G, et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): a randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015;16(2):221-32. doi: 10.1016/S1470-2045(14)71200-8.

Ramsay AG. Immune checkpoint blockade immunotherapy to activate anti-tumour T-cell immunity. Br J Haematol. 2013;162(3):313-25. doi: 10.1111/bjh.12380.

Swanson MS, Sinha UK. Rationale for combined blockade of PD-1 and CTLA-4 in advanced head and neck squamous cell cancer – review of current data. Oral Oncol. 2015;51(1):12-5. doi: 10.1016/j.oraloncology.2014.10.010.

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.

Nat Rev Cancer. 2012;12(4):252-64. doi: 10.1038/nrc3239.

Cho YA, Yoon HJ, Lee JI, Hong SP, Hong SD. Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncol. 2011;47(12):1148-53. doi: 10.1016/j.oraloncology.2011.08.007.

Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733-41. doi: 10.1158/0008-5472.CAN-12-2384.

Malm IJ, Bruno TC, Fu J, Zeng Q, Taube JM, Westra W, et al. Expression profile and in vitro blockade of PD-1 in HPV-negative head and neck squamous cell carcinoma. Head Neck. 2015;37(8):1088-95. doi: 10.1002/hed.23706.

Li J, Jie HB, Lei Y, Gildener-Leapman N, Trivedi S, Green T, et al. PD-1/SHP-2 inhibit Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res. 2015;75(3):508-18. doi: 10.1158/0008-5472.CAN-14-1215.

Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63(19):6501-5.

Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73(1):128-38. doi: 10.1158/0008-5472.CAN-12-2606.

Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, et al. CTLA-4 regulatory T cells increased in cetuximab-treated head and neck cancer patients, suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer Res. 2015;75(11):2200-10. doi: 10.1158/0008-5472.CAN-14-2788.

Parikh F, Duluc D, Imai N, Clark A, Misiukiewicz K, Bonomi M, et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 2014;74(24):7205-16. DOI: 10.1158/0008-5472.CAN-14-1913.

Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, et al. Identification of the Cell-Intrinsic and –Extrinsic pathways down stream of EGFR and IFN gamma that induce PD-L1 expression in head and neck cancer. Cancer Res. 2016;76(5):1031-43. doi: 10.1158/0008-5472.can-15-2001.

Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68(17):6889-95. doi: 10.1158/0008-5472.CAN-08-0161.

Cheng. ASCO2015, oral presentation.

Starr P. Encouraging results for pembrolizumab in head and neck cancer. Am Health Drug Benefits. 2015;8:16.

Seiwert TY, Burtness B, Weiss M, Eder JP, Yearley J, Murphy E, et al. Inflamed-phenotype gene expression signatures, and in particular a gamma-interferon signature, predicted benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ head and neck cancer patients. J Clin Oncol. 2015;33(15):6017.

Bauman JE, Gooding WE, Clump DA. Phase I trial of cetuximab, intensity modulated radiotherapy (IMRT), and the anti-CTLA-4 monoclonal antibody (mAb) ipilimumab in previously untreated, locally advanced head and neck squamous cell carcinoma (PULA HNSCC). J Clin Oncol. 2014;32(15):6104. DOI: 10.1200/jco.2014.32.15_suppl.tps6104.

Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab vs investigator’s choice in recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): CheckMate-141. Oral presentation at: AACR Annual Meeting 2016; April 16-20, 2016; New Orleans, LA.

Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rödel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110(2):501-9. doi: 10.1038/bjc.2013.640.

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-54. http://dx.doi.org/10.1056/NEJMoa1200690.

Ukpo OC, Thorstad WL, Lewis JS. B7-H1 expression model for immuneevasion in human papillomavirus-related oropharyngeal squamous cell

carcinoma. Head Neck Pathol. 2013;7(2):113-21. doi: 10.1007/s12105-012-0406-z.

Hsu MC, Hsiao JR, Chang KC, Wu YH, Su IJ, Jin YT, et al. Increase of programmed death-1-expressing intratumoral CD8 T cells predicts a poor prognosis for nasopharyngeal carcinoma. Mod Pathol. 2010;23(10):1393-403. doi: 10.1038/modpathol.2010.130.

Zandberg DP, Strome SE. The role of the PD-L1:PD-1 pathway in squamous

cell carcinoma of the head and neck. Oral Oncol. 2014;50(7):627-32. doi: 10.1016/j.oraloncology.2014.04.003.

Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-23. doi: 10.1056/NEJMoa1003466.

Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL. The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13(21):6301-11. doi: 10.1158/1078-0432.CCR-07-1403.

Jie HB, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer. 2013;109(10):2629-35. doi: 10.1038/bjc.2013.645.

Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154-7. doi: 10.1126/ science.1206923.

Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22(5):1048-54. doi: 10.1158/1078-0432.ccr-15-2667.

Gough MJ, Ruby CE, Redmond WL, Dhungel B, Brown A, Weinberg AD. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res. 2008;68(13):5206-15. doi: 10.1158/0008-5472.CAN-07-6484.

Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late stage cancer patients. Cancer Res. 2013;73(24):7189-98. doi: 10.1158/0008-5472.CAN-12-4174.

Montler R, Bell RB, Leidner R, Crittenden M, Bui T, Cheng A, et al. OX40 and other immunoregulatory molecules are highly expressed on tumor infiltrating lymphocytes in oral, head and neck squamous cell carcinoma. J Immunother Cancer. 2014;2(3):113.

Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am J Pathol. 1995;146(5):1029-39.

Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):353-64. doi: 10.1016/s0092-8674(00)80108-7.

Teknos TN, Cox C, Yoo S, Chepeha DB, Wolf GT, Bradford CR, et al. Elevated serum vascular endothelial growth factor and decreased survival in advanced laryngeal carcinoma. Head Neck. 2002;24(11):1004-11. doi: 10.1002/hed.10163.

Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 1996;2(10):1096-103. doi: 10.1038/nm1096-1096.

Johnson BF, Clay TM, Hobeika AC, Lyerly HK, Morse MA. Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther. 2007;7(4):449-60. doi: 10.1517/14712598.7.4.449.

Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res. 2005;11(4):1434-40. doi: 10.1158/1078-0432.CCR-04-1870.

Fury MG, Lee NY, Sherman E, Lisa D, Kelly K, Lipson B, et al. A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer. 2012;118(20):5008-14. doi: 10.1002/cncr.27498.

Yao M, Galanopoulos N, Lavertu P, Fu P, Gibson M, Argiris A, et al. Phase II study of bevacizumab in combination with docetaxel and radiation in locally advanced squamous cell carcinoma of the head and neck. Head Neck.

;37(11):1665-71. doi: 10.1002/hed.23813.

Argiris A, Kotsakis AP, Hoang T, Worden FP, Savvides P, Gibson MK, et al. Cetuximab and bevacizumab: preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2013;24(1):220-5. doi: 10.1093/annonc/mds245.

Argiris A, Karamouzis MV, Gooding WE, Branstetter BF, Zhong S, Raez LE, et al. Phase II trial of pemetrexed and bevacizumab in patients with recurrent or metastatic head and neck cancer. J Clin Oncol. 2011;29(9):1140-5. doi: 10.1200/JCO.2010.33.3591.

Yoo DS, Kirkpatrick JP, Craciunescu O, Broadwater G, Peterson BL, Carroll MD, et al. Prospective trial of synchronous bevacizumab, erlotinib, and concurrent chemoradiation in locally advanced head and neck cancer. Clin Cancer Res. 2012;18(5):1404-14. doi: 10.1158/1078-0432.CCR-11-1982.

Fury MG, Xiao H, Sherman EJ, Baxi S, Smith-Marrone S, Schupak K, et al. Phase II trial of bevacizumab + cetuximab + cisplatin with concurrent intensitymodulated radiation therapy for patients with stage III/IVB head and neck squamous cell carcinoma. Head Neck. 2016;38(1):566-70. doi: 10.1002/hed.24041.

Chung TK, Warram J, Day KE, Hartman Y, Rosenthal EL. Time-dependent pretreatment with bevacizumab increases tumor specific uptake of cetuximab in preclinical oral cavity cancer studies. Cancer Biol Ther. 2015;16(5):790-8. doi: 10.1080/15384047.2015.1016664.

Bellati F, Napoletano C, Ruscito I, Pastore M, Pernice M, Antonilli M, et al. Complete remission of ovarian cancer induced intractable malignant ascites with intraperitoneal bevacizumab. Immunological observations and a literature review. Invest New Drugs. 2010;28(6):887-94. doi: 10.1007/s10637-009-9351-4.

Mansfield AS, Nevala WK, Lieser EA, Leontovich AA, Markovic SN. The immunomodulatory effects of bevacizumab on systemic immunity in patients with metastatic melanoma. Oncoimmunology. 2013;2(5):e24436. doi: 10.4161/onci.24436.

Swiecicki PL, Zhao L, Belile E, Sacco AG, Chepeha DB, Dobrosotskaya I, et al. A phase II study evaluating axitinib in patients with unresectable, recurrent or metastatic head and neck cancer. Invest New Drugs. 2015;33(6):1248-56. doi: 10.1007/s10637-015-0293-8.

##submission.downloads##

Опубліковано

2020-06-04

Номер

Розділ

НАУКОВІ ОГЛЯДИ